- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Vellekoop, Johan (3)
-
Bralower, Timothy J. (2)
-
Ferrière, Ludovic (2)
-
Gulick, Sean P. (2)
-
Kring, David A. (2)
-
Lowery, Christopher M. (2)
-
Morgan, Joanna V. (2)
-
Owens, Jeremy D. (2)
-
Sato, Honami (2)
-
Smit, Jan (2)
-
Whalen, Michael T. (2)
-
Wittmann, Axel (2)
-
Alegret, Laia (1)
-
Birch, Heather (1)
-
Bralower, Timothy (1)
-
Burney, David (1)
-
Chenot, Elise (1)
-
Chernonozhkin, Stepan M. (1)
-
Christeson, Gail L. (1)
-
Claeys, Philippe (1)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The Cretaceous/Paleogene (K/Pg) boundary is marked by one of the largest mass extinctions in Earth’s history, with geological evidence for this event being expressed in hundreds of locations worldwide. An extensively studied section located near El Kef, northwestern Tunisia, is characterized by the classic iridium-rich K/Pg boundary layer, abundant and well-preserved microfossils, and apparently continuous sedimentation throughout the early Danian with no previously described structural complication. These features led to its designation in 1991 as the Global Stratigraphic Section and Point (GSSP) for the base of the Danian (i.e., the K/Pg boundary). However, the outcrop section has become weathered, and the “golden spike” marking the GSSP is difficult to locate. Therefore, the El Kef Coring Project aimed to provide a continuous record of unweathered sediments across the K/Pg transition in cores recovered from five rotary-drilled holes located close to the El Kef GSSP. Here, we present new, high-resolution lithologic, biostratigraphic, and geochemical data from these cores. The recovered stratigraphic successions of each hole (all drilled within ∼75 m of one another) are unexpectedly different, and we identified a formerly unknown unconformity within planktic foraminiferal biozone P1b. Our results provide evidence that sedimentation at El Kef was not as continuous or free from structural complication as previously thought. Despite these challenges, we present a new composite section from the five El Kef holes and an age model correlated to the orbitally tuned record at Walvis Ridge, South Atlantic Ocean, which is critical in placing the paleoenvironmental and paleoecological records from El Kef in a global context.more » « less
-
Goderis, Steven; Sato, Honami; Ferrière, Ludovic; Schmitz, Birger; Burney, David; Kaskes, Pim; Vellekoop, Johan; Wittmann, Axel; Schulz, Toni; Chernonozhkin, Stepan M.; et al (, Science Advances)null (Ed.)The Cretaceous-Paleogene (K-Pg) mass extinction is marked globally by elevated concentrations of iridium, emplaced by a hypervelocity impact event 66 million years ago. Here, we report new data from four independent laboratories that reveal a positive iridium anomaly within the peak-ring sequence of the Chicxulub impact structure, in drill core recovered by IODP-ICDP Expedition 364. The highest concentration of ultrafine meteoritic matter occurs in the post-impact sediments that cover the crater peak ring, just below the lowermost Danian pelagic limestone. Within years to decades after the impact event, this part of the Chicxulub impact basin returned to a relatively low-energy depositional environment, recording in unprecedented detail the recovery of life during the succeeding millennia. The iridium layer provides a key temporal horizon precisely linking Chicxulub to K-Pg boundary sections worldwide.more » « less
-
Lowery, Christopher M.; Bralower, Timothy J.; Owens, Jeremy D.; Rodríguez-Tovar, Francisco J.; Jones, Heather; Smit, Jan; Whalen, Michael T.; Claeys, Phillipe; Farley, Kenneth; Gulick, Sean P.; et al (, Nature)
An official website of the United States government
